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2D Convection – Complex Domains 

Introduction 

In practical applications of CFD, one often encounters complex domains. A domain is called 

complex when it cannot be elegantly described (or mapped) by a Cartesian grid. By way of 

illustration, we consider a few examples. Figure 1 shows the smallest symmetry sector of a 

nuclear rod bundle placed inside a circular channel of radius R. There are nineteen rods: one rod 

at the channel center, six rods (equally spaced) in the inner rod ring of radius b1, and twelve rods 

in the outer ring of radius b2. The rods are circumferentially equispaced. The radius of each rod 

is ro. The fluid (coolant) flow is in the x3 direction. The flow convects away the heat generated 

by the rods and the channel wall is insulated. It is obvious that a Cartesian grid will not fit the 

domain of interest because the lines of constant x1 or x2 will intersect the domain boundaries in 

an arbitrary manner. In such circumstances, it proves advantageous to adopt alternative means 

for mapping a complex domain. 

These alternatives are to use 

1. curvilinear grids or 

2. finite-element-like unstructured grids. 

Curvilinear Grids 

It is possible to map a complex domain by means of curvilinear grids (ξ1, ξ2) in which directions 

of ξ1 and ξ2 may change from point to point. Also, curvilinear lines of constant ξ1 and constant ξ2 

need not intersect orthogonally either within the domain or at the boundaries. Figure 2 shows the 

nineteen-rod domain of Figure 1 mapped by curvilinear grids. The figure shows that curvilinear 

lines generate clearly identifiable quadrilateral control volumes. When the IOCV method is used, 

the task is to integrate the transport equations over a typical control volume. To facilitate this, it 

becomes necessary to first transform the transport equations written in Cartesian coordinates to 

curvilinear coordinates via transformation relations: 

 



                      
Figure 1. Example of a complex domain. 

 

                             x1 = F1 (ξ1, ξ2), x2 = F2 (ξ1, ξ2).      ………………   1. 

 

In general, these functional relationships must be developed by numerical grid generation 

techniques (in the next lecture). The grids shown in Figure 2 are in fact generated by numerical 

means. For simpler domains, however, the functional relationships can be specified by algebraic 

functions. The new-set of transport equations in curvilinear coordinates are developed in section  

curvilinear Grids. One advantage of mapping domains by curvilinear grids is that one can still 

retain the familiar (I, J ) structure to identify a node (or the corresponding control volume) 

because, as can be seen from Figure 2, along any curvilinear line ξ1, the total number of 

intersections with constant-ξ2 lines remains constant and vice versa. Further advantages of this 

identifying structure will become clear in section curvilinear Grids. 

 

Unstructured Grids 

Another alternative for a complex domain is to map the domain by triangles or any n-sided 

polygons (including quadrilaterals) or any mix of triangles and polygons. Figure 3 shows the 

mapping of a nineteen-rod bundle by triangles as an example. In this case, the rods are arranged 

in such a way that the smallest symmetry sector is a doubly connected domain.  

                                 
Figure 2. Nineteen-rod bundle – curvilinear grids. 

 



                             
Figure 3. Nineteen-rod bundle – unstructured grid. 

 

Such mapping can be generated by commercially available grid generators such as ANSYS. 

Each triangle may now be viewed as a control volume over which the transport equations are to 

be integrated to arrive at the discretised equations. It will be recognized that a triangle is a very 

convenient elemental construct because it can map any convex intrusion or concave extrusion at 

the domain boundaries. More importantly, triangles can also effectively skirt any blocked region 

within the overall domain, as shown in Figure 3. Such skirting cannot be elegantly accomplished 

if curvilinear grids are used for mapping. The flexibility offered by mapping by triangulation is 

thus obvious. Further, it is not necessary that all triangles be of the same size or shape. In spite of 

this flexibility, it becomes necessary to make a significant departure from curvilinear grid 

practice with respect to node identification when unstructured grids are used. It is obvious from 

Figure 3, for example, that one cannot readily identify elements (or nodes) by employing the 

familiar (I, J) structure as was possible with curvilinear grids. Elements, perforce, must be 

identified serially with a single identifier N (say). Thus, an element having identifier N will 

interact with elements having arbitrary identifying numbers without any generalisable rules. This 

contrasts with the case of curvilinear grids in which a control volume (I, J ) will always interact 

with control volumes identified by (I + 1, J ), (I − 1, J ), (I, J + 1), and (I, J − 1). This serial 

numbering has consequences for solution of discretised equations evolved on an unstructured 

grid. In passing, we note that there are a variety of methods for triangulation. Automatic 

triangulation requires detailed considerations from the subject of computational geometry. In 

next lecture, some simpler approaches will be introduced. Most CFD practitioners, however, 

employ commercially available packages such as ANSYS for unstructured grid generation. 

 

Curvilinear Grids 
Coordinate Transformation 

Our first task is to transform the transport equations in Cartesian coordinates to those in 

curvilinear coordinates. Thus, employing the chain rule, we can write the first-order derivatives 

as 
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The next task is to determine derivatives of ξ1 and ξ2 with respect to x1 and x2 knowing equations 

1. To do this, we note that 
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 These relations can be written in matrix form as |dx| = |A||dξ |, or 
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Now, manipulation of Equations 4 and 5 will show that 

 

     
 

     
*   (

   

   
)       (

   

   
)   +      ………………  7 

     
 

     
*   (

   

   
)        (

   

   
)   +       ………………  8 

 

Where cof denotes cofactor of and Det A stands for determinant of A. Thus, from the last two 

equations, it is easy to deduce that 
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Where the βs are called the geometric coefficients and are given by 
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Further, it follows that 
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Where symbol J stands for the Jacobian of the matrix A. We can now rewrite Equations 2 and 3 

as 
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